

Filtration Solutions

ivysads.com

DESIGNED AND BUILT FOR STRENGTH, DURABILITY, AND RELIABILITY.

TABLE OF CONTENTS

Ivys is committed to responsible and sustainable environmental solutions.

A World Powered by Clean Energy

By providing both high-performance and innovative technological solutions for the purification of renewable gas and by offering a wide range of equipment for the conditioning, compression, and filtration of air and gas, lvys is part of the great line of companies aiming to decarbonize the planet. A sustainable development model that integrates economic growth with social and environmental responsibility.

Our slogan, "Purely Driven," reflects our vision of a cleaner planet, our continued search for more efficient solutions, and our dedication to building an organization of excellence together that stays true to its values.

Products Designed for Compressed Air

- Practical solutions developed from over 50 years of experience
- + Full range of products for one-stop shopping
- Proven quality on a global scale

Exceptional Technical Support

- ✦ Flexible, fully-trained technical team
- Expert advice and simple solutions for the right product, every time

Customers First

- + Direct line, live support
- + Easy to use catalog
- ✦ Readily available aftermarket service and support

Compressed Air Purification

The Application

Compressed Air

It's used for a wide variety of needs as a safe, reliable power source. Unlike gas, water, and electricity, compressed air is generated on site so the user takes on the serious responsibility for air quality and operational cost. Untreated compressed air is the major contributor of poor operational performance and health and safety issues. Therefore, companies must recognize and respond to increasingly critical needs for best-in-class compressed air purification.

The Problem

Contamination

Most compressed air systems are susceptible to:

- Solid particulates like atmospheric dust, micro-organisms, rust and pipe scale
- Water vapor, condensed liquid water, and water aerosols
- Oil vapor, liquid oil, and oil aerosols (fine mist)

Result

Corrosion in storage vessels and overall air distribution system; blocked valves, cylinders and motors; more frequent desiccant changes for adsorption dryers; product contamination; environmental non-compliance; inefficient production processes leading to increased cost and spoiled, damaged, and reworked products.

The Solution

Treatment

Compressed air must be treated prior to entry into the distribution system to protect equipment and at point of use to address the specific application and level of required air quality. System engineers use ISO 8573-1:2010 as the standard – a simple method that classifies the level of air purity. Filters are specially designed and tested to meet these rigorous standards so system operators can choose the appropriate quality that addresses their purification needs.

7

COMPRESSED AIR PURITY STANDARDS

International standards organization (ISO)

ISO represents the national standard organizations of 159 countries. It is the body that determines the accepted international standards for compressed air quality and testing. There are two standards currently in use for filters – ISO 8573 and ISO 12500.

- ISO 8573 has 9 parts. Part 1 is called ISO 8573-1:2010 and is used to specify the purity of compressed air required at a particular point in a compressed air system. Parts 2 to 10 are used for testing purposes.
- ISO 12500 is used verify and benchmark performance of compressed air purification equipment.

ISO 8573-1 specifies the amount of allowable contamination in each category - solid particulate, water, and oil – by class. The resulting three, digit code is used by compressor manufacturers to classify the required purity level of compressed air for specific applications.

IVYS

IVYS

Understanding Compressed Air Purity Standards

Example: Air Purity Level Required for Machine Tooling: ISO Code 8573-1:2010 - 3/5/4

- The first number refers to particulate contaminants class 3 means that in each cubic meter of compressed air, the particulate count should not exceed 90,000 particles in the 0.5 to 1 micron size range, and 1,000 particles in the 1 to 5 micron size range.
- The second number refers to water contaminants a class 5 pressure dewpoint (PDP) of 45 °F (7 °C) is required, and no liquid water is allowed.
- The third number specifies level of oil contaminants class 4 means that in each cubic meter of compressed air, not more than 5 mg of oil is allowed. This is a total for liquid, aerosol and vapor.

		Particulate			Water			Oil	
1	Solic	l particles and	dust	Humidi	ty and liqu	id water	Liquid,	, vapor, aer	osol oil
	Parti	icles per m³, by	/ size	Vapor p	pressure de	ewpoint	Tota	l concentra	ation
Class	0.1 to 0.5 microns	0.5 to 1.0 microns	l to 5 microns	Class	°C	°F	Class	mg/m³	ppm w/w
0		As specified		0	As spe	ecified	0 As specifie		ecified
1	≤ 20,000	≤ 400	≤ 10	1	≤ -70	≤ -94	1	≤ 0.01	≤ 0.008
2	≤ 400,000	≤ 6,000	≤ 100	2	≤ -40	≤ -40	2	≤ 0.1	≤ 0.08
3	Not specified	≤ 90,000	≤ 1,000	3	≤ -20	≤ -4	3	≤ 1.0	≤ 0.8
4	Not specified	Not specified	≤ 10,000	4	≤ 3	≤ 38	4	≤ 5.0	≤ 4.0
5	Not specified	Not specified	≤ 100,000	5	≤7	≤ 45	Х	≤ 5.0	≤ 4.0
	Particle Conc	centration (mg/m³)		6	≤ 10	≤ 50			
6		0 to 5		Liquid Wa	ter Concentra	ntion (g/m³)			
7		5 to 10		7	≤ (D.5			
Х		>10		8	0.5	to 5			
				9	5 to	o 10			
				×	>	10			

Compressor Room

The quality of air required throughout a typical compressed air system can vary. Compressed air must be treated prior to entry into the distribution system to protect equipment and at point of use to address the specific application and level of air quality required.

TYPE OF FILTRATION

Water Separation

Large, heavy amounts of liquid droplets or particles from a compressed air flow are separated through gravitational forces, centrifugal forces, inertial effects, etc. The differential pressure is constant and high-separation efficiency is guaranteed over the entire specified flow rate range.

Dry Type Filtration

Solid contaminants are separated from the compressed air system. The solids contact the fibres of the filter medium where they remain. A coarse and a fine-coarse medium filter protects the fine-filter medium, increasing the service life. The differential pressure (dry) increases with an increasing amount of contaminant. The elements can be operated from inside-to-out or vice-versa. The preferred direction of flow is toward the finer filter fibres, i.e. from out-to-in.

Wet Type Filtration

Liquid contaminants from the compressed air flow are separated using a fine multi-layer filter medium in combination with a drainage medium (coalescing filter). The liquid contaminants contact the fibres of the fine filter medium, move along the fibres due to the compressed air flow and form larger droplets when they are merged (coalescing effect). The droplets are adsorped by the drainage medium, discharged to the filter element bottom, due to gravitational forces, and drop off the filter element. Theoretically, the differential pressure (wet) is constant. However, it rises as the filter element is continuously loaded with liquid and solid contaminants. The direction of flow is toward the drainage medium, i.e. from in-to-out.

Oil Vapor Adsorption

Compressed air flow is separated by means of adsorption to activated carbon. The air becomes virtually oil-free that cannot condense into a liquid any more. There is often a filter medium downstream of the activated carbon in order to eliminate activated carbon abrasion particles (abrasion-free activated carbon filter). The differential pressure (dry) is constant. The direction of flow is always toward the medium, i.e. from in-to-out. Liquid oil or water would dramatically reduce the retention capacity of the activated carbon for oil vapor and should, therefore, be separated in advance, using appropriate grade filters.

Filter Medium Designed For Compressed Air

High-quality compressed air filtration starts with selecting the correct filter medium. Ivys uses superior-quality filter medium with a new hybrid technology. Ivys elements stop the perpetual discussion about the use of filter medium with or without binders because they are layered with both types, tailored to the filtration task. The fine-filter medium is protected on both sides using a supporting fabric to increase both stability and reliability.

Pleated Filter Elements

Pleated filter elements provide significantly greater filtration volumes than non-pleated. The higher filter volume provides more void space for holding contaminants which reduces the differential pressure caused by retention of solid particles. Service life of the filter element increases proportionally, which results in operating and maintenance cost savings.

Incorporated Drainage Medium

The filter and drainage medium are compacted between two stainless steel supporting cylinders, eliminating any potential detachment of the filter medium. The drainage medium is located inside the filter element, eliminating potential handling damage. The stainless steel cylinders have big, diamond-shaped openings for optimum flow conditions. Compared to punch-hole versions, their contribution to differential pressure is much lower and they are much more environmentally friendly because they are made from expanded sheet metal, i.e. without metal scrap during the production process.

2-Stage Dry-Type Separation

During dry-type separation with out-to-inside flow through the filter elements, the drainage medium functions as a pre-filter stage, preventing coarse contaminants from entering the fine-filter medium. As a result, the differential pressure caused by contaminants is reduced and the service life of the filter is extended. As an additional advantage, the filter elements can also be used for wet-type filtration.

Abrasion-free Activated Carbon Filter with 100% Activated Carbon

Both the filter element type and the cartridge type contain pure activated carbon granulate. The increased filling quantities contribute to a high separation performance and a long service life. Both the elements, and the cartridges have an integrated general purpose filter element, which significantly reduces the abrasion particles of the activated carbon. As a result, downstream dust filtration is not required, reducing installation, operation, and maintenance costs.

Our Filtration Solutions

BEST-IN-CLASS AIR FILTERS

Surface Protection

High-grade, cast aluminum filter housings (XL and XM series)

- Chromatized for corrosion protection
- Finished with impact and abrasion-proof coating on the outer side

High pressure carbon steel housings (XH series)

- Manufactured by means of iron phosphate passivation
- Nickel-coated finish

This multi-layer surface protection ensures high resistance and long service life.

Conformity with International Standards (ISO8573)

The X Series has been performance validated according to ISO8573 quality standards and ISO test methods by IUTA, an independent verification body. All filters have been tested to ASME standards, are CRN registered and comply with EU Pressure Equipment Directive 2014/68/EU (PED).

An Optimized Accessories Range – Perfectly Simple

- ✦ Differential pressure gauges
- Condensate drains

Simple Design, Easy Maintenance

Ivys' filters have lugs in the lower filter part to which the filter element is securely mounted, fastened, and sealed when the housing is screwed tight. This eliminates the need for a tie rod, which allows the filter to be located only a few inches above ground level. A mechanical end stop prevents the housing thread from being overstressed and ensures easy opening of the filter housing even after prolonged operating periods. A hex-nut at the bottom of the bowl has been added for extra help. The filter element holder has guide paths in order for the filter element to be automatically locked in the holder when being installed.

Doesn't require a tie rod

LOW PRESSURE

XL series

Pressure: 290 psig/ 20 barg

<u>)</u>/

Page 16

MEDIUM PRESSURE

XM series

Pressure: 725 psig/ 50 barg _{Page 18}

HIGH PRESSURE

XH series

Pressure: 6,000 psig/ 420 barg Page 20

XL Series Low pressure 290 psig/20 barg

The XL series of low-pressure filters are used to remove solid, liquid and, when using activated carbon cartridges, gaseous contaminants from compressed air flows. In addition to liquids and dust, these filters eliminate oil droplets and the finest dust particles from the compressed air.

Volume Flow Range	29 to 1,412 SCFM – 50 to 2,400 Nm³/h
Port Size	¼" to 3" NPT

Filter Elements Gauges G1 WS Water Separator Element С 3 µm Coarse Pre-filter Element G3 1 µm General Purpose Element 0.1 um Fine Element 0.01 um Super-Fine Element **Manual Drains** AC Activated Carbon Element DI Activated Alumina Cartridge AAC MSC Molecular Sieve Cartridge D3 ACC Activated Carbon Cartridge

To Order Your XL Filters

Ordering example: XLA N 5 SF P G1 D5 N

Low pressure air filter, ³/₄" NPT, flow 106 SCFM, Super-Fine medium grade, DP gauge, automatic internal float drain.

lvys	Series	Application	Port Connection	Filter Model	Medium Grade (microns)	End Cap	Gauge	Drain	
Х	L (low)	A (air)	N (NPT)	1	WS	P (polymer) default Max. temp. 176 °F/80 °C	N (none) default	N (none) default	
				2	C (3 µ)	A (aluminum) Max. temp. 248 °F/120 °C	GI (magnetic differential manometer)	D1 (manual valve)	
				3	G (1 µ)	S (stainless steel) Max. temp. 248 °F/120 °C	G2 (magnetic differential manometer) w/alarm)	D3 (manual ball valve)	
				4	F (0.1 µ)		G3 (differential pressure drop indicator)	D5 (automatic internal float drain)	
				5	SF (0.01 µ)		II (oil indicator)	D6 (automatic condensate drain)	
				6	AC			D7 (electronic condensate drain)	
				7	AAC				
				8	ACC				
				9	MSC		Acces	sories	
				10			N (none) default		
				11		I			
				12			AK (assembly kit)		

Use This Table to Find Your Filter Model

XL	NPT	Filtor	Air Flow Capacity*				Dimen	sions**		Volumo		Mass		
Filter	Port Size	Filter Flement		гараспу	ļ		E	3	(VOIC	une	IVIc	355
Model	(in)		SCFM	Nm³/h	in	mm	in	mm	in	mm	gal	litres	lb	kg
1	1/4	XE105	29	50	7 3⁄4	197	3 ¼	80	3/4	21	0.13	0.5	1.5	0.7
2	3⁄8	XE107	41	70	7 3⁄4	197	3 ¼	80	3/4	21	0.13	0.5	1.5	0.7
3	1/2	XE114	59	100	10 1/2	267	3 1/4	80	3/4	21	0.18	0.7	1.8	0.8
4	3/4	XE114	59	100	10 ½	267	3 ¼	80	3/4	21	0.18	0.7	1.8	0.8
5	3/4	XE201	106	180	10 1⁄4	259	4 1⁄2	117] 1/4	33	0.42	1.6	4.0	1.8
6	1	XE202	177	300	14	359	4 1/2	117] 1⁄4	33	0.55	2.1	5.0	2.2
7	1 1⁄2	XE203	277	470	18	459	4 1⁄2	117] 1⁄4	33	0.71	2.7	5.5	2.5
8	1 1/2	XE205	412	700	25 ¼	639	4 1/2	117] 1⁄4	33	1.0	3.8	6.8	3.1
9	2	XE305	553	940	27 1/2	700	5 1/2	140	2	50	1.6	6.1	12.1	5.5
10	2	XE307	853	1,450	37 ¼	950	5 ½	140	2	50	2.2	8.4	16.3	7.4
11	2 1/2	XE506	1,142	1,940	32	811	8 ¼	217	2 3⁄4	69	4.46	16.9	30.0	13.6
12	3	XE507	1,412	2,400	39 ½	1,003	8 ¼	217	2 3⁄4	69	5.52	20.9	37.3	16.9

*Flow capacity refers to 1 bar(a) and 68 °F/20 °C at 100 psig/7 barg. **See picture on page 16 for references.

Flow Correction Factors

To select the right filter, use the following formulas and the nominal flow figures from the filter model table: For calculating Actual Flow Capacity: $V_a = V_n * Cfp$ For calculating Nominal Flow Capacity: $V_n = V_a / Cfp$

	psig	44	72	100	116	131	145	160	174	189	203	218	232	250	265	290
Operating	barg	3	5	7	8	9	10	11	12	13	14	15	16	17	18	20
Pressure	cfp	0.50	0.80	1.00	1.13	1.25	1.38	1.50	1.63	1.75	1.88	2.00	2.13	2.25	2.37	2.61

XM Series MEDIUM PRESSURE 725 psig/50 barg

The XM series of medium-pressure filters are used to remove solid, liquid and, when using activated carbon cartridges, gaseous contaminants from compressed air flows. In addition to liquids and dust, these filters eliminate oil droplets and the finest dust particles from the compressed air. With AC grade elements oil aerosols and odor(s) will be removed.

Volume Flow Range	29 to 853 SCFM / 50 to 1,450 Nm³/h
Port Size	½" to 3" NPT

Differential Pressure Drop Indicator

G4

D3

To Order Your XM Filters

Ordering example: XmA N 1 G 5 G4 N N

Medium pressure air filter, ½" NPT, flow 42 SCFM, general purpose medium grade with s/s end caps, DPI.

lvys	Series	Application	Port Connection	Filter Model	Medium Grade (microns)	End Cap	Gauge	Drain
Х	M (med)	A (air)	N (NPT)	1	WS	P (polymer) default Max. temp. 176 °F/80 °C	N (none) default	N (none) default
				2	C (3 µ)	A (aluminum) Max. temp. 248 °F/120 °C	G4 (differential pressure drop indicator)	D3 (manual ball valve)
				3	G (1 µ)	S (stainless steel) Max. temp. 248 °F/120 °C		
				4	F (0.1 µ)			
				5	SF (0.01 µ)			
				6	AC			
			7 AAC				Accesso	ries
			8	ACC		N (papa) di	ofoult	
				9	MSC		N (none) de	eldult

Use This Table to Find Your Filter Model

XM	NPT	Filtor	Air Flow Capacity*				Dimen	isions**					Mass	
Filter	Port Size	Filter Element	AIT FIOW C	гарасцу.	ļ		E	3	(ime	IVIċ	ISS
Model	(in)	Liement	SCFM		in			mm	in	mm	gal	litres	lb	kg
1	1/2	XE105	29	50	9 3⁄4	250	4	102	1 1⁄4	31	0.21	0.8	4.6	2.1
2	3/4	XE107	41	70	9 3⁄4	250	4	102	1 1/4	31	0.21	0.8	4.6	2.1
3	1	XE114	59	100	9 3⁄4	250	4	102	1 1⁄4	31	0.21	0.8	4.6	2.1
4	1 1⁄2	XE 202	177	3 00	21	535	5 ½	141] 3/4	46	0.98	3.7	20.9	9.5
5	1 1⁄2	XE 203	277	470	21	535	5 ½	141] 3/4	46	0.98	3.7	20.9	9.5
6	2	XE20 5	412	7 00	28 ¼	715	5 1/2	141] 3⁄4	46	1.37	5.2	26.9	12.2
7	2	XE 305	553	940	28 ¼	715	5 1/2	141	1 3⁄4	46	1.37	5.2	26.9	12.2
8	2	XE 307	853	1,450	37 ¼	945	5 1/2	141] 3/4	46	2.09	7.9	34.2	15.5
9	3	XE 506	1142	1,940	33 ¼	847	7 3⁄4	198	2 3⁄4	70	4.41	16.7	67.0	30.4
10	3	XE 5 07	1412	2,400	39 ³ /4	1,010	7 3⁄4	198	2 3⁄4	70	5.23	19.8	76.9	34.9

*Flow capacity refers to 1 bar(a) and 68 °F/20 °C at 100 psig/7 barg.

**See picture on page 18 for references.

Flow Correction Factors

To select the right filter, use the following formulas and the nominal flow figures from the filter model table: For calculating Actual Flow Capacity: $V_a = V_n * Cfp$ For calculating Nominal Flow Capacity: $V_n = V_a / Cfp$

Operating	psig	44	72	100	145	189	232	290	435	580	725
Droccuro	barg	3	5	7	10	13	16	20	30	40	50
Pressure	cfp	0.50	0.8	1.00	1.38	2	2.13	2.63	3.88	5.13	6.38

XH Series MIGH PRESSURE 5,800 psig/400 barg

The XH series of high-pressure filters are used to remove solid, liquid and, when using activated carbon cartridges, gaseous contaminants from compressed air flows. In addition to liquids and dust, these filters eliminate oil droplets and the finest dust particles from the compressed air.

Volume Flow Range	18 to 277 SCFM / 30 to 470 Nm ³ /h
Port Size	1/4" to 2" NPT

Filter Elements

Manual Needle Valve

*See table on next page for dimensions

To Order Your XH Filters

Ordering example: XHA = N = 5 = 5 = 04 = N

High pressure air filter, 1" NPT, flow 106 SCFM, super-fine medium grade with SS end caps and a needle valve.

lvys	Series	Application	Port Connection	Filter Model	Medium Grade (microns)	End Cap	Gauge	Drain
Х	H (high)	C (CNG)	N (NPT)	1	WS	P (polymer) default Max. temp. 176 °F/80 °C	N (none) Default [*]	N (none) default
			S (SAE)	2	C (3 µ)	A (aluminum) Max. temp. 248 °F/120 °C	*available on request	D4 (manual needle valve)
				3	G (1 µ)	S (stainless steel) Max. temp. 248 °F/120 °C		
				4 5	F (0.1 μ) SF (0.01 μ)			
				6	AC	I		
				7	AAC		Accesso	ries
					ACC MSC		N (none) d	efault

Use This Table to Find Your Filter Model

	XH	NPT Dort Filtor		Air Flow Capacity*				Dimer	sions**		Valuma		Macc		
	Filter	Port Size	Filter Flement	AIT FIOW (capacity.	ļ	4	E	3	(ime	I∨Ič	455
Model		(in)		SCFM		in	mm			in	mm	gal	litres	lb	kg
	1	1/4	XE103	18	30	6	155	3 ¼	83	2 3⁄4	70	0.04	0.16	13	5.9
	2	3⁄8	XE107	41	70	7 1/2	193	4	103	3 ¼	85	0.08	0.32	22.2	10.7
	3	1/2	XE114	59	100	10 1/4	262	4	103	3 1/4	85	0.14	0.52	26	11.8
	4	3/4	XE114	59	100	10 1/4	262	4	103	3 ¼	85	0.14	0.53	26	11.8
	5	1	XE201	106	180	11 1⁄4	285	5 3⁄4	146	5	130	0.29	1.10	78.8	35.7
	6	1 1/2	XE202	177	300	15 ¼	385	7 ¼	146	5	130	0.40	1.78	90	40.8
	7	2	XE203	277	470	19 3⁄8	494	7 1/4	182	5	150	0.75	3.35	145	65.8

*Flow capacity refers to 1 bar(a) and 68 °F/20 °C at 100 psig/7 barg.

**See picture on page 20 for references.

Flow Correction Factors

To select the right filter, use the following formulas and the nominal flow figures from the filter model table: For calculating Actual Flow Capacity: $V_a = V_n * Cfp$ For calculating Nominal Flow Capacity: $V_n = V_a/Cfp$

Operating Pressure	psig	100	362	1,450	2,175	2,990	3,625	4,350	5,075	5,800
	barg	7	50	100	150	200	250	300	350	400
	cfp	1.00	6.00	12.00	20.00	25.00	30.00	35.00	40.00	45.00

Filtration Grade										
WS	С	G	F	SF	AC	AAC	ACC	MSC		
Designation										
Water separator	Coarse, Pre-Filter	General Purpose Filter particulate and coalescing	Fine Filter particulate and coalescing	Super Fine Filter	Odour Removal Activated Carbon	Activated Alumina Cartridge	Activated Carbon Cartridge	Molecular Sieve Cartridge		
			Purity	Class acc to IS	D 8573-1					
-/8/-	6/-/4	2/-/2	1/-/1	1/-/0-1	1/-/0-1	1/-/0-1	1/-/0-1	1/3/1		
	Performance Specs									
>98% >10 µ (microns) separation (droplets and big particles)	99.99% 3 μ (microns) separation of coarse particles and reduction of liquid particles	99.9999% 1 µ (microns) separation of fine particles <0.5 mg/m ³ residual oil content (liquid phase)	99.9999% O.1 µ (microns) separation of fine particles <0.1 mg/m ³ residual oil content (liquid phase)	99.99999% 0.01 µ (microns) separation of finest particles <0.01 mg/m ³ residual oil content (liquid phase)	<0.005 mg/m³ Residual oil content (gas phase)	Application dependent	<0.005 mg/m³ Residual oil content (gas phase)	Application dependent		
				Type of Filtratic	on					
Water separation	Wet and dry type	Wet and dry type	Wet and dry type	Wet and dry type	Oil vapor adsorption	Water vapor adsorption	Oil vapor adsorption	Water vapor adsorption		
				Application						
Removal of large amounts of liquid	Removal of large amounts of solid or liquid coarse contaminants	Removal of medium amounts of solid or liquid fine contaminants	Removal of small amounts of solid or liquid of finer contaminants. Recommend combining with upstream C or G element in the event of increased amounts of contaminants	Removal of small amounts of solid or liquid of finest contaminants Recommend combining with upstream G or F element in the event of increased amounts of contaminants	Removal of small amounts of gaseous contaminants, in particular, oil vapor. Upstream F or SF element required. No downstream particulate filter required as it comes with integrated G element	Removal of small amounts of water vapor	Removal of small amounts of gaseous contaminants, in particular, oil vapor for low volume flow rates. Upstream F or SF element required. No downstream particulate filter required as it comes with integrated G element	Removal of small amounts of water vapor		

Elements come with polymer end caps but are available with aluminum or stainless steel end caps.

To Order Your Elements

Ordering example: XE 203 C A

Coarse, pre-filter element for filter model XL7, with aluminum end caps.

lvys	Série	Filter Model	Medium Grade _(microns)	End Cap		
Х	E (element)	103	WS	P (polymer) default		
		105	С (3 µ)	A (aluminium)		
		107	G (1 μ)	S (stainless steel)		
		114	F (0.1 µ)			
		114	SF (0.01 µ)			
		201	AC			
		202	AAC			
		203	ACC			
		205	MSC			
		305				
		307				
		506				
		507				

Filter	Dime	Flow Ca	apacity*				
Element Size			SCFM	Nm³/h	For Filter Housing		ising
XE103	Ø=1 ½; h=2	Ø = 42; h = 53	30	50	-	-	XHI
XE105	Ø=2; h=2 ¼	Ø = 51; h = 59	40	70	XL1	XM1	-
XE107	Ø=2; h=3	Ø=51; h=75	60	100	XL2	XM2	XH2
XE114	Ø=2; h=5 ½	Ø=51; h=144	90	150	XL3/XL4	XM3	XH3/XH4
XE201	Ø=3; h=4 ½	Ø=75; h=118	150	250	XL5	-	XH5
XE202	Ø=3; h=8 ½	Ø=75; h=218	300	450	XL6	XM4	XH6
XE203	Ø=3; h=12 ½	Ø=75; h=318	410	700	XL7	XM5	XH7
XE205	Ø=3; h=20	Ø=75; h=508	630	1,050	XL8	XM6	-
XE305	Ø=3 ½; h=20	Ø=92; h=506	820	1,400	XL9	XM7	-
XE307	Ø=3 ½; h=30	Ø=92; h=760	1,240	2,100	XL10	XM8	-
XE506	Ø=5 ¹ / ₂ ; h=23 ³ / ₄	Ø=140; h=605	1,650	2,800	XL11	XM9	-
XE507	Ø=5 ½; h=30	Ø=140; h=755	2,060	3,500	XL12	XM10	-

* Refers to 1 bar(a) and 68 °F/20 °C at 100 psig/7 barg

24

Looking for Compressed Natural Gas (CNG) Filters?

Ask our sales team or visit our website at **ivysads.com**

题》·发展《教学》

WE SUPPORT YOU FOR ALL YOUR EQUIPMENT NEEDS!

Ivys is committed to providing you with top-quality services and a complete range of replacement parts, and spares for your compressed air and gas equipment of all makes and models.

- ✦ Fully certified technicians on call
- + Onsite commissioning
- Preventative maintenance
- Servicing and upgrading
- Replacements and spares for all makes and models

AFTERMARKET SERVICES

- Custom Service/Maintenance Contracts
- ✦ Desiccants
- Parts Filters, Separators, Elements, Drains, Hygrometers, Probes
- Training Workshops, Webinars, Certification

Contact our support team at 1-877-469-3232 or visit our website at **ivysads.com**

ivysads.com

QUEBEC

Head Office and Manufacturing Division 730 Industriel Boulevard

Blainville, Quebec J7C 3V4 CANADA

ONTARIO

Ontario Head Office

60 Haist Avenue, Unit 1 Woodbridge, Ontario L4L 5V4 CANADA

€ 905-850-9888

Industrial Division

1120 Michele-Bohec Boulevard, Suite 100 Blainville, Quebec J7C 5N5 CANADA

Guelph Office

5477 Highway 6 North Guelph, Ontario N1H 6J2 CANADA & 519-837-0450